
Providing support for creating next generation software
architecture languages

Ivano Malavolta
Dipartimento di Informatica, Università dell’Aquila, Via Vetoio, L’Aquila, Italy

ivano.malavolta@univaq.it

ABSTRACT
Many languages for software architectures have been proposed,
each dealing with different stakeholder concerns, operating at dif-
ferent levels of abstraction and with different degrees of formal-
ity. It is known that a universal architectural language cannot exist
since the various concerns, requirements, and domains may change.
Moreover, stakeholder concerns and needs are various and ever
evolving even while designing a single system. Model-driven tech-
niques may be used to answer the need for supporting the creation
of extensible, customizable and stakeholder-oriented architectural
languages (i.e., next generation architectural languages). Part of
this approach is developed in a framework called BYADL.

In this paper I present the big picture behind the approach, the
research aspects considered in order to get BYADL closer to an
ideal architectural framework and future research issues.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures; D.2.11 [Software Engineering]: Software
Architectures; D.2.10 [Software Engineering]: Design

General Terms
Design, Modeling.

1. RESEARCH PROBLEM
Architectural languages [5] are fundamental while designing com-

plex, critical systems that need methods and tools ensuring specific
properties like dependability, fault tolerance, security. Since they
have been proposed, their underlying philosophies, concepts and
tools are continuously evolving.

Nowadays, the view of software architecture is getting broader
and takes into consideration emerging concepts like multiple stake-
holders concerns and their design decisions [2, 3, 5]. However,
current ADLs are still not aligned with the evolved concept of soft-
ware architecture. Emerging requirements like language extensi-
bility, customization, or multiple views management are still not
adequately supported by current ADLs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

In [1] a list of the requirements a next generation ADL shoud
support have been traced out. Domain specific concerns (R1): al-
low software architects to instantiate a generic architectural lan-
guage into a choosen domain by adding domain-specific modelling
elements. Multiple views (R2): support for adding, deleting, merg-
ing the various views that make up the overall architectural descrip-
tion of the system. Analysis features (R3): if analysis is a need,
analysis-specific concepts should be part of the architectural lan-
guage. Interoperability with other ADLs (R4): architectural lan-
guages should be able to interoperate so to globally satisfy all the
stakeholders needs [4]. Promote architecture-centric development
(R5): architectural languages should be integrated into the develop-
ment processes taking into account other life-cycle activities. Tool
support (R6): tools are fundamental and should support features as
editing, visualization, analysis and so on.

I am developing an approach that allows the creation of architec-
tural languages satisfying the above mentioned requirements; part
of the approach have been already considered in a framework called
BYADL [1]. In this extended abstract I provide a high-level vision
on how to support next generation ADLs; I will also present the
research outcomes we had and the main goals we envision on it.

2. BACKGROUND AND RELATED WORK
Some research work has been done in the direction of developing

extensible and customizable architectural languages. Acme1 speci-
fications may be extended by means of properties that can decorate
each element; these properties are uninterpreted. xADL2 is based
on XML and so it is fully extendable; however, XML schemas do
not provide advanced facilities to define the semantics of individ-
ual elements. AADL3 provides extensibility mechanisms (annexes
and property sets), but it does not provide automated support for
them. XTEAM4 provides domain-specific analysis by transform-
ing a composed metamodel to analysis-specific notations; however
this is not done via a dedicated interoperability framework.

These approaches propose extension mechanisms that only par-
tially satisfy requirements R1, R2, and R3. Requirement R4 is not
properly addressed by any language (just Acme to some extent).
Concrete and scalable solutions for R5 are missing. Tools support-
ing the features described by R6 can be considered not mature.

3. THE ENVISIONED APPROACH
Building on the requirements listed in Section 1 and the evolved

notion of software architecture, I am investigating on how a next
1Acme: http://www.cs.cmu.edu/~acme/
2xADL: http://www.isr.uci.edu/projects/xarchuci/
3AADL: http://www.aadl.info/
4XTEAM: http://www-scf.usc.edu/~gedwards/xteam.html

generation architectural language (and the framework supporting
it) should be.

R1 states that an architectural language must support domain-
specific concerns. Given the extensibility of the language, it may
be extended to consider domain-specific elements of the system
as first-class entitites. The framework allows to specialize generic
architectural elements to particular domains; this provides a ded-
icated reasoning environment for domain experts. Every stake-
holder will be familiar with the concepts he is dealing with.

An architectural framework should provide also a repository in
which architectural notations, domain informations, decisions, and
architectural design rules are stored. This aspect is strongly re-
lated to both R1 and R2 requirements. Such a repository should be
enriched with suitable metadata allowing the framework to autom-
atize facilities like search, querying and, in general, to guide the
stakeholder using it. Using a central repository promotes also the
reuse of knowledge, notations, and design rules.

Regarding R3, assuring as early as possible the correctness of
an SA is fundamental in order to produce quality software. Each
analysis technique requires analysis-specific concepts that are part
of the architectural language.

Next generation architectural languages must interoperate (R4)
so to globally satisfy all the stakeholder needs; in our vision the
framework may also keep notations separated, and lets them inter-
operate by means of suitable transformations.

According to R5, architectural languages should be integrated
into the development life-cycle phases; this point has two main im-
plications: (i) the language must offer not only design elements,
but also elements related to requirements, development, testing,
and so on; (ii) the framework should support the management of
development teams, project timing, risks and provide facilities for
collaborative development/design. This implies that the framework
considers stakeholders as a first-class entity, ; it should also pro-
vide different views of the architecture depending on the current
stakeholder and filter system informations depending on the stake-
holder’s access rights. Stakeholders may be domain experts, system
developers, designers, customers, financial managers, project man-
agers and so on. The repository should also support mechanisms
for merging, splitting, composing notations with specific views,
domain-specific concerns and analysis-oriented concepts. These
aspects are related also to R1 and R2.

Tool support (R6) is one of the key points for the success of an
ADL. So, each facility outlined above must be implemented in a
tooling environment. The tool of the language should be extensible
and customizable too. Eclipse5 is a clear example of how a frame-
work may benefit from extensibility and customization features.

4. RESULTS AND CONTRIBUTIONS
In [1] we introduced BYADL, a model-driven framework em-

bodying the one outlined in Section 3. BYADL provides an in-
cremental approach to build customized and customizable ADLs
starting from an already existing one. The main input of BYADL is
represented by the metamodel of the ADL to be extended. BYADL
contains a repository of metamodels; each metamodel is tagged de-
pending on the concepts it contains(e.g., domain, ADL, customiza-
tion). The metamodel is extended by applying specific metamodel
composition operators, they are: Match, Inherit, Reference, Ex-
pand. The composition engine performs semantic checks to avoid
incidental errors. The ADL obtained at the end of the process is
composed of (i) abstract syntax, i.e. the metamodel obtained by
means of the composition mechanisms, (ii) a set of concrete syn-

5Eclipse Project Home Page: http://www.eclipse.org

taxes, i.e., (semi)-automatically generated textual and graphical no-
tations to visualize and edit models, and (iii) semantics describing
the meaning of each language construct. The semantics of the ex-
tended language is given by means of semantic relationships be-
tween the language’s elements and elements of a core set of archi-
tectural concepts called A0 [4]. By means of such relationships,
the elements of the ADL implicitly inherit the built-in semantics of
A0. Model migrators are defined in order to automatically generate
model transformations able to reflect the models defined within the
newly created ADL, back to the original tools. Migrators are au-
tomatically generated by higher-order transformations and are fun-
damental for analyzing ADL models using their original tools.

BYADL addresses the main emerging requirements of next gen-
eration ADLs at different degrees. More precisely, the composition
mechanism satisfies R1, R2, and R3 since they provide mecha-
nisms to extend the ADL with Domain specific concerns, with new
Architectural views, and with Analysis notations, respectively.

Focussing on the management of multiple views, if software ar-
chitects represent the concepts of a viewpoint through a metamodel,
then BYADL can be used to store viewpoints in the repository and
organize them with suitable metadata. So, the BYADL composition
engine (along with the migrators engine) may be used as a means
to merge, split or customize architectural viewpoints within an in-
tegrated framework. This is one of the main research direction we
are currently pursuing on BYADL.

Furthermore, the proposed operators are used also to define rela-
tionships between software architecture and development processes
and methodologies, thus addressing requirement R4.

The requirement R5 is satisfied by reusing DUALLY, a frame-
work for ADLs interoperability we proposed in [4]. DUALLY
promotes to keep notations separated and define transformations
among them. BYADL reuses DUALLY to achieve interoperabil-
ity: once the new ADL has been generated, it interoperates with all
the other notations that are already in the DUALLY environment.

The R6 requirement is satisfied because the framework of the ex-
tended ADL is the BYADL tool itself (with its textual and graphical
editors, extensibility mechanisms, and migrators).

Finally, an interesting aspect of BYADL is that it may be used
to create a new ADL from scratch by considering a generic meta-
model for SAs as starting notation. I am investigating on this as-
pect, on its feasibility and on what should be the starting point for
the composition process.

Acknowledgments
This work was partially supported by the Italian Government under
the project PRIN 2007 D-ASAP (2007XKEHFA).

5. REFERENCES
[1] D. Di Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and

A. Pierantonio. Developing next generation adls through mde
techniques. In ICSE 2010, to appear.

[2] ISO. Fourth working draft of Systems and Software
Engineering – Architectural Description (ISO/IECWD4
42010). Working doc.: ISO/IEC JTC 1/SC 7 N 000, 2009.

[3] P. Kruchten, P. Lago, and H. van Vliet. Building up and
reasoning about architectural knowledge. QoSA, 2006.

[4] I. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri.
Providing architectural languages and tools interoperability
through model transformation technologies. IEEE TSE, 2010.

[5] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. John Wiley
& Sons, January 2009.

